AERMOD White Papers Update

12th Modeling Conference on Air Quality Modeling

Chris Owen
US EPA/OAQPS/AQAD
Air Quality Modeling Group
AERMOD Development Site

- AERMOD Modeling System Development website: https://www.epa.gov/scram/aermod-modeling-system-development
- Original AERMOD White Papers from 2017
- Current AERMOD White Papers
- Can be updated anytime
 - New NO₂ White Paper added
 - New deposition White Paper under development
- Open to submissions from the community
 - White Paper template available
 - Statement of issue with the model
 - Review of current scientific development
 - Considerations for implementation in the model
 - Must be a potential update to AERMOD, within the context of Appendix W requirements
- Penetrated Plume White Paper submitted in August, under review
AERMOD White Papers

• AERMOD near-term system updates
 • Low wind conditions
 • LOW_WIND keyword (Minimum σ_v value, Minimum wind speed, FRANMAX)
 • Considering additional options for minimum Monin–Obukhov length and associated parameterizations of vertical temperature gradient scale (θ^*)
 • Downwash
 • ORD and PRIME2 alpha options added to 19191
 • EPA planning additional evaluations
 • ORD conducting additional development work to address other downwash issues
 • NO$_2$ enhancements
 • New field studies (API, BLM, PRCI, ERM, AECOM, EPA, City of Denver, other O&G industry groups)
 • New Tier 3 method, based on ADMS approach (API collaboration)
 • New Tier 2 method, based on NO/O3 reaction rate limitations, released by (EPA)
 • Mobile sources
 • RLINE added to 19191 (FHWA Collaboration)
• Overwater
 • IWAQM agreement with the Dept. of Interior’s Bureau of Ocean and Energy Management (BOEM)
 • Downwash effects that are unique to offshore platforms which are raised, often open lattice structures
 • BLM planning additional wind tunnel studies to inform algorithm development
 • OCD has platform downwash algorithms, EPA/BOEM discussing integration into AERMOD
• Shoreline/Coastal Fumigation
 • Evaluation of screening algorithms in AERSCREEN, Shoreline Dispersion Model (SDM), and more recent published research.
• Marine Boundary Layer Parameterization
 • Some work in using AERCOARE preprocessor for overwater meteorological data available as a counterpart to AERMET
• Saturated plumes/Plume rise
 • PLURIS is generic plume rise model (AECOM)
 • BLP-like sources been important recently
 • Additional focus on merged plumes & industrial heat islands resulting in increased plume rise
Providing Non-Regulatory Options

- **ALPHA options** – “experimental”, i.e., developmental options not available for regulatory use
- **BETA options** – Peer-reviewed options that are potentially ready for consideration as alternative model(s)

ALPHA Option

Section 3.2.2 of Appendix W
- e.g., Scientific peer review
- e.g., Databases available

BETA Option

Formal promulgation through NPRM

Regulatory Option

5
What makes a BETA option?

- **Section 3.2.2.e – no preferred model**
 1. Technique has received a scientific peer review;
 2. Technique is applicable to the problem on a theoretical basis;
 3. Databases to perform the analysis are available and adequate;
 4. Performance evaluations have shown that the model or technique is not biased to underpredict; and
 5. A protocol on methods and procedures has been established.

- **Section 3.2.2.b.2 – there is a preferred model**
 - A statistical performance evaluation has been conducted with air quality data showing that the alternative model performs better.

- **Section 3.1.1.c – selecting a preferred model**
 1. Complete test dataset must be packaged with the model.
 2. The model must be useful to typical users.
 3. The model documentation must include a robust comparison with air quality data.
AERMOD “Top 10” Download Facts

- August 21st through Sept 30th (41 days)
- 1241 downloads of AERMOD (~1 year since last release)
- SCREEN3 (253) vs AEMET (233)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>aermod_implementation_guide.pdf</td>
<td>659</td>
</tr>
<tr>
<td>aermod_userguide.pdf</td>
<td>647</td>
</tr>
<tr>
<td>aermod_mcb14_v19191.pdf</td>
<td>550</td>
</tr>
<tr>
<td>aermod_quick-reference-guide.pdf</td>
<td>373</td>
</tr>
<tr>
<td>appw_17.pdf</td>
<td>348</td>
</tr>
<tr>
<td>twelfth_modeling_conference-draft_agenda.pdf</td>
<td>331</td>
</tr>
<tr>
<td>aermet_userguide.pdf</td>
<td>189</td>
</tr>
<tr>
<td>aermod_sample_run.pdf</td>
<td>174</td>
</tr>
<tr>
<td>aermet_mcb9.pdf</td>
<td>156</td>
</tr>
<tr>
<td>epa_rtp_hotel_info.pdf</td>
<td>126</td>
</tr>
<tr>
<td>aermod_exe.zip</td>
<td>779</td>
</tr>
<tr>
<td>aermod_source.zip</td>
<td>257</td>
</tr>
<tr>
<td>screen3.zip</td>
<td>253</td>
</tr>
<tr>
<td>aermet_exe.zip</td>
<td>233</td>
</tr>
<tr>
<td>samplerun.zip</td>
<td>216</td>
</tr>
<tr>
<td>aermod_exe-32.zip</td>
<td>205</td>
</tr>
<tr>
<td>aerscreen_code.zip</td>
<td>164</td>
</tr>
<tr>
<td>aermod_test_cases_19191.zip</td>
<td>119</td>
</tr>
<tr>
<td>aermap_exe.zip</td>
<td>98</td>
</tr>
<tr>
<td>sample_aerplot_run.zip</td>
<td>86</td>
</tr>
</tbody>
</table>